![]()  | 
   ||||||||
![]()  | 
   ![]()  | 
   ![]()  | 
   ![]()  | 
   |||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ![]()  | 
   |||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
For problems like this where the coordinate system itself is rotating, the moment equations are
(5) 
⎲⎳Mx
 = Ixω̇x − IyΩzωy + IzΩyωz
 
 
⎲⎳My
 = Iyω̇y − IzΩxωz + IxΩzωx
 
 
⎲⎳Mz
 = Izω̇z − IxΩyωx + IyΩxωy
The above equations are simplified greatly when it is recognized that the following are equal to zero: ωz, Ωx, Ωz, ωẋ, ωẏ, ωż. With these simplifications, the moment equations become:
(6) 
⎲⎳Mx
 = 0
 
 
⎲⎳My
 = 0
 
 
⎲⎳Mz
 =  − IxΩyωx
 
 
 =  − 91, 875Nm
← Previous Page
← Previous Page













