Derivation of the turbulent kinetic energy equation
Introducing the Reynolds decomposition into the original x1-momentum equation and multiplying the result by the fluctuation u1’ yields
(1) u1’(∂(U1 + u1’))/(∂t) + u1’(Uj + uj’)(∂(U1 + u1’))/(∂xj) = − (u1’)/(ρ)(∂(P + p’))/(∂x1) + νu1’(∂2(U1 + u1’))/(∂xj∂xj)
Eq.(1↑) is averaged to get
(2) u1’(∂u1’)/(∂t) + Uj u1’(∂u1’)/(∂xj) + u1’uj’(∂U1)/(∂xj) + u1’uj’(∂u1’)/(∂xj) = − (1)/(ρ)u1’(∂p’)/(∂x1) + νu1’(∂2u1’)/(∂xj∂xj)
which can be rearranged as follows
(3) (1)/(2)(∂u1’2)/(∂t) + (1)/(2)Uj(∂u1’2)/(∂xj) + u1’uj’(∂U1)/(∂xj) + (1)/(2)(∂u1’2uj’)/(∂xj) − (1)/(2)u1’2(∂uj’)/(∂xj) = − (1)/(ρ)u1’(∂p’)/(∂x1) + νu1’(∂2u1’)/(∂xj∂xj)
Multiplying the continuity equation by u1’ and averaging the result, the following relation is obtained.
from the averaged continuity equation. Hence, this term can be removed from Eq.(3↑). Similarly, the same process can be followed with the x2-momentum equation
(5) (1)/(2)(∂u2’2)/(∂t) + (1)/(2)Uj(∂u2’2)/(∂xj) + u2’uj’(∂U2)/(∂xj) + (1)/(2)(∂u2’2uj’)/(∂xj) = − (1)/(ρ)u2’(∂p’)/(∂x2) + νu2’(∂2u2’)/(∂xj∂xj)
and with the x3-momentum equation
(6) (1)/(2)(∂u3’2)/(∂t) + (1)/(2)Uj(∂u3’2)/(∂xj) + u3’uj’(∂U3)/(∂xj) + (1)/(2)(∂u3’2uj’)/(∂xj) = − (1)/(ρ)u3’(∂p’)/(∂x3) + νu3’(∂2u3’)/(∂xj∂xj)
Adding Eq.(3↑), Eq.(5↑) and Eq.(6↑), the following equation is obtained.
(7) (1)/(2)(∂ui’ui’)/(∂t) + (1)/(2)Uj(∂ui’ui’)/(∂xj) + ui’uj’(∂Ui)/(∂xj) + (1)/(2)(∂ui’ui’uj’)/(∂xj) = − (1)/(ρ)uj’(∂p’)/(∂xj) + νui’(∂2ui’)/(∂xj∂xj)
The pressure term can be rewritten by considering the continuity equation.
(8) − (1)/(ρ)uj’(∂p’)/(∂xj) = − (1)/(ρ)(∂uj’p’)/(∂xj) + (1)/(ρ)p’(∂uj’)/(∂xj) = − (1)/(ρ)(∂uj’p’)/(∂xj)
The viscous term can also be rewritten as follows
The turbulent kinetic energy is defined by k = (1)/(2)ui’ui’. Finally, introducing the changes presented in Eq.(8↑) and Eq.(9↑) into Eq.(7↑), the turbulent kinetic energy (TKE) equation is obtained.
(10) (∂k)/(∂t) + Uj(∂k)/(∂xj) = (∂)/(∂xj)⎛⎝ν(∂k)/(∂xj) − (1)/(2)ui’ui’uj’ − (1)/(ρ)ujp’⎞⎠ − ui’uj’(∂Ui)/(∂xj) − ν(∂ui’)/(∂xk)(∂ui’)/(∂xk)