We now solve the governing equation
(24) Mi[ξï + ω2iξi] = Ξi
(25)
(mℓ)/(2)[
− Aiω2isin(ωit) − Biω2icos(ωit) − CiΩ2cos(Ωt)
+ Aiω2isin(ωit) + Biω2icos(ωit) + Ciω2icos(Ωt)]
Cancelling and simplifying, we obtain Ci as
(26) Ci = (2F( − 1)i + 1)/((ω2i − Ω2)mℓ)
D) Replace and simplify for ν(x, t)
Replacing all of the coefficients in the equation for ν(x, t)
(27) ν(x, t) = ∞⎲⎳i = 1⎡⎣ − (2F( − 1)i + 1)/((ω2i − Ω2)mℓ)cos(ωit) + (2F( − 1)i + 1)/((ω2i − Ω2)mℓ)cos(Ωt)⎤⎦φi(x)
Which simplifies to our final solution
where ωi and φi(x) are given by equations (14) and (15), respectively.
← Previous Page
← Previous Page