![]()  | 
   ||||||||
![]()  | 
   ![]()  | 
   ![]()  | 
   ![]()  | 
   |||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ![]()  | 
   |||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
![]()  | 
   ||||||||
PLANAR VELOCITY OF TWO POINTS ON THE SAME RIGID BODY 
Figure 3↓ shows the same problem but simplified to motion in the x − y plane. ωa ⁄ I simplifies to θ̇k where k is the unit vector in a3 or z direction. PAB is a vector in x − y or a1 − a2 plane so that
where the α and β terms represent constants in each coordinate system. Taking the derivatives, and substituting the values from eq.  14↑ the yields
(15) 
VB
 = 
VA + ωa ⁄ I × PAB
 
 
 
VA + θ̇k × (β1 i + β2 j)
 = 
VA + θ̇β1 j − θ̇β2 i
 
 
 
VA + θ̇a3 × (α1 a1 + α2 a2)
 = 
 VA + θ̇α1 a2 − θ̇α2 a1













