Welcome to AE Resources
Vibrating String: Example 2

B) Using A), determine the general solution of ξi:

Starting from the governing equation of the form:
(8) Mi(ξï + ω2iξi) = Ξi
In order to solve this, we need to determine ξi. We must consider the odd and even cases separately. For the even forcing function, we simply have a 0. For the odd forcing function, we have a cost) and a constant term, so we will have:
(9) ξi = Aisin(ωit) + Bicos(ωit) + Cicos(Ωt) + Di if i = odd ξi = Aisin(ωit) + Bicos(ωit) if i = even

C) Using the initial conditions, solve for the unknown coefficients:

We have been given 2 initial conditions, so we apply them here and solve:
(10) ν(x, 0) = 0 = i = 1ξiφi dx
(11) ξi = Aisin(0) + Bicos(0) + Cicos(0) + Di = Bi + Ci + Di if i = odd ξi = Aisin(0) + Bicos(0) = Bi if i = even
Applying orthogonality here, we get that
(12) Bi = 0  if i = even Bi =  − Ci − Di if i = odd
(13) (ν(x, 0))/(t) = sin(2πx)/() = i = 1ξi̇φi
Taking one derivative of ξi we see that for both even and odd cases
(14) ξi̇ = ωiAi
Plugging this in and applying orthogonality by multiplying both sides by sin((jπx)/()) and integrating from 0 to with respect to x
(15) 0sin(2πx)/()sin(jπx)/() dx = i = 1ωiAi0sin(iπx)/()sin(jπx)/() dx
(16) ()/(2) = ω2A2()/(2) ⇒ A2 = 1 ⁄ ω2  if i = j = 2 0 = ωiAi()/(2) ⇒ ()/(2) ≠ 0  and ωi ≠ 0  so Ai = 0  if i = j ≠ 2
(17) ξi =  (1)/(ω2)sin(ω2t) if i = 2 0  if i = even ≠ 2  − (Ci + Di)cos(ωit) + Cicos(Ωt) + Di if i = odd
Next Page →
Next Page →
← Previous Page
← Previous Page