Need to solve the governing equation to solve for Ci + Di
(18)
Mi = (mℓ)/(2) Mi(ξï + ω2iξi)
= Ξi
(mℓ)/(2)(ξï + ω2iξi)
= (2ℓ)/(iπ)cos(Ωt) − ( − 1)(i − 1) ⁄ 2
Solving for ξï
(19) ξï = ω2i(Ci + Di)cos(ωit) − Ω2Cicos(Ωt)
and then plugging everything back into the governing equation
(20)
ω2iCicos(ωit) + ω2iDicos(ωit) − Ω2Cicos(Ωt) − ω2iCicos(ωit)
−
ω2iDicos(ωit) + ω2iCicos(Ωt) + ω2iDi = (4)/(iπ)cos(Ωt) − (2)/(ℓm) ( − 1)(i − 1) ⁄ 2
Cancelling and simplifying we get
Then breaking it up into like parts:
(22)
(ω2i −
Ω2)Cicos(Ωt) = (4)/(miπ)cos(Ωt)
Ci = (4)/(miπ)(1)/((ω2i − Ω2)
(23) Di = − (2)/(ℓω2i) ( − 1)(i − 1) ⁄ 2
Combining we have our final solution
(24)
ν(x, t) =
(1)/(ω2)sin(ω2t)cos⎛⎝(2πx)/(ℓ)⎞⎠
+ ∞⎲⎳i = oddsin⎛⎝(iπx)/(ℓ)⎞⎠⎡⎣(4)/(miπ)(1)/((ω2i − Ω2))(cos(Ωt) − cos(ωit))
− (2)/(mℓω2i) ( − 1)(i − 1) ⁄ 2(1 − cos(ωit))⎤⎦
where ωi = √((T)/(m))(iπ)/(ℓ)
Next Page →
Next Page →
← Previous Page
← Previous Page