Welcome to AE Resources
Converted document EXAMPLES: SPHERICAL COORDINATES

EXAMPLES: SPHERICAL COORDINATES

Given a cartesian vector of the form
(1) Xi + Yj + Zk
and a spherical vector of the form
(2) rer + φeφ + θeθ
Conversion from spherical to Cartesian coordinates can be accomplished by
(3) X  = rsinφcosθ Y  = rsinφsinθ Z  = rcosφ
Conversion back to spherical coordinates can be perfomed using
(4) r  = (X2 + Y2 + Z2)(1 ⁄ 2) φ  = cos − 1(Z)/(r) θ  =  sin − 1(Y)/((X2 + Y2)(1 ⁄ 2))  if X ≥ 0        π − sin − 1(Y)/((X2 + Y2)(1 ⁄ 2))  if X < 0 
Example 1
Find the spherical coordinates of the point whose Cartesian coordinates are (4, 6, 5).
To find the spherical coordinates, plug the Cartesian coordinates into into equation 4↑.
(5) r  = (42 + 62 + 52)(1 ⁄ 2) ≈ 8.7750 φ  = cos − 1(5)/(8.7750) ≈ 0.9645rad θ  = sin − 1(6)/((42 + 62)(1 ⁄ 2)) ≈ 0.9828rad
The spherical representation of the Cartesian vector 4 i + 6 j + 5 k is therefore
(6) 8.7750 er + 0.9646 eφ + 0.9828 eθ.
Example 2
Find the Cartesian coordinates of the point whose spherical coordinates are (10, pi/6, pi/3).
To find the Cartesian coordinates, plug these spherical coordinates into into equation 3↑.
(7) X  = 10sin(π)/(6)cos(π)/(3) = 2.5 Y  = 10sin(π)/(6)sin(π)/(3) ≈ 4.3301 Z  = 10cos(π)/(6) ≈ 8.6603