Welcome to AE Resources
Forced Vibrating String: Example 2

1D) Replace and simplify for ν(x, t) for the point force

Substituting in for all of the constants we get
(15) ν(x, t)  = 1 − (2F01(t)sin(iπ)/(4))/(mω2i)cos(ωit) + (2F01(t)sin(iπ)/(4))/(mω2i)φi(x)  = cos(ωit) + (2F01(t)sin(iπ)/(4))/(mω2i)[1 − cos(ωit)]φi(x) for i = 1
(16) ν(x, t)  =  − (2F01(t)sin(iπ)/(4))/(mω2i)cos(ωit) + (2F01(t)sin(iπ)/(4))/(mω2i)φi(x)  = (2F01(t)sin(iπ)/(4))/(mω2i)[1 − cos(ωit)]φi(x) for i ≠ 1
We then use the kronecker delta symbol to show that the cos(ωit) term only exists for i = 1 and obtain the final solution for the displacement of the string as a result of the point force, and call it νpointforce(x, t)
(17) νpointforce(x, t) = i = 1δi1cos(ωit) + (2F01(t)sin(iπ)/(4))/(mω2i)[1 − cos(ωit)]φi(x)
Now we need to determine the displacement of the string for the distributed force

2A) Find Ξi for the distributed force:

(18) Ξi = l0F(x, t)φi(x) dx
(19) Ξi  = l0F0sin(4Ωt)φi(x) dx  = F0sin(4Ωt)l0sin((iπx)/()) dx  = (F0ℓsin(4Ωt))/(iπ)(1 − cos(iπ))
(20) Ξi =  (2F0ℓsin(4Ωt))/(iπ) for i = odd 0  for i = even

2B) Using 2A), determine the general solution of ξi for the distributed force:

Since the forcing function varies as sin(4Ωt), we represent ξi as follows
(21) ξi = Aisin(ωit) + Bicos(ωit) + Cisin(4Ωt)
Next Page →
Next Page →
← Previous Page
← Previous Page