1D) Replace and simplify for ν(x, t) for the point force
Substituting in for all of the constants we get
(15)
ν(x, t)
= ⎡⎢⎣⎛⎜⎝1 − (2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)⎞⎟⎠cos(ωit) + (2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)⎤⎥⎦φi(x)
= ⎡⎢⎣cos(ωit) + (2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)[1 − cos(ωit)]⎤⎥⎦φi(x)
⎫⎬⎭for i = 1
(16)
ν(x, t)
= ⎡⎢⎣⎛⎜⎝ − (2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)⎞⎟⎠cos(ωit) + (2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)⎤⎥⎦φi(x)
= ⎡⎢⎣(2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)[1 − cos(ωit)]⎤⎥⎦φi(x)
⎫⎬⎭for i ≠ 1
We then use the kronecker delta symbol to show that the cos(ωit) term only exists for i = 1 and obtain the final solution for the displacement of the string as a result of the point force, and call it νpointforce(x, t)
(17) νpointforce(x, t) = ∞⎲⎳i = 1⎡⎢⎣δi1cos(ωit) + (2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)[1 − cos(ωit)]⎤⎥⎦φi(x)
Now we need to determine the displacement of the string for the distributed force
2A) Find Ξi for the distributed force:
(18) Ξi = l⌠⌡0F(x, t)φi(x) dx
(19)
Ξi
= l⌠⌡0F0sin(4Ωt)φi(x) dx
= F0sin(4Ωt)l⌠⌡0sin((iπx)/(ℓ)) dx
= (F0ℓsin(4Ωt))/(iπ)(1 − cos(iπ))
2B) Using 2A), determine the general solution of ξi for the distributed force:
Since the forcing function varies as sin(4Ωt), we represent ξi as follows
(21) ξi = Aisin(ωit) + Bicos(ωit) + Cisin(4Ωt)
Next Page →
Next Page →
← Previous Page
← Previous Page