Welcome to AE Resources
Forced Vibrating String: Example 2

2C) Using the initial conditions, solve for the unknown coefficients for the distributed force:

From the initial condition given,
(22) ν(x, 0) = sin((πx)/()) = i = oddξiφi  = (Aisin(0) + Bicos(0) + Cisin(0))φi  = Biφi
Applying orthogonality, we find that
(23) Bi =  1  if i = j = 1 0  if i = j ≠ 1
Now we look to the initial velocity of 0 initial condition
(24) ν̇(x, 0) = 0  = i = oddξi̇φi = (Aiωicos(0) − Biωisin(0) + 4CiΩcos(0))φi 0  = (Aiωi + 4CiΩ)φi  = 0(Aiωi + 4CiΩ)sin((iπx)/())sin((jπx)/()) (orthogonality)  = (Aiωi + 4CiΩ)()/(2) Ai =  − (Ci)/(ωi)
Now we need to solve the governing equation
(25) Mi(ξï + ω2iξi) = Ξi
Taking 2 derivatives to get
(26) ξï = 4ΩωiCisin(ωit) − Biω2icos(ωit) − 16Ω2Cisin(4Ωt)
We plug in to the governing equation
(27) (m)/(2)[ ωiCisin(ωit) − Biω2icos(ωit) − 16Ω2Cisin(4Ωt)  + ω2i(( − 4ΩCisin(ωit))/(ωi) + Bicos(ωit) + Cisin(4Ωt)] = Ξi
Plugging in for Bi, Ξi and cancelling/simplifying we see that
(28) Ci = (4F0)/(iπm(ω2i − 16Ω2))
Next Page →
Next Page →
← Previous Page
← Previous Page