2D) Replace and simplify for ν(x, t) for the distributed force
(29) ν(x, t) = ∞⎲⎳i = oddξiφi
We have two cases, one for i = 1 and one for i ≠ 1
(30) ν(x, t) = ⎧⎨⎩
( − 4Ω)/(ωi)⎛⎝(4F0)/(iπm(ω2i − 16Ω2))⎞⎠sin(ωit) + cos(ωit) + (4F0)/(iπm(ω2i − 16Ω2))sin(4Ωt)
for i = 1
( − 4Ω)/(ωi)⎛⎝(4F0)/(iπm(ω2i − 16Ω2))⎞⎠sin(ωit) + (4F0)/(iπm(ω2i − 16Ω2))sin(4Ωt)
for i ≠ 1
Noticing that the cos(ωit) term is the only difference between the two, we can use the kronecker delta symbol to show this, and say
(31) ν(x, t) = ∞⎲⎳i = odd⎛⎝(4F0)/(iπm(ω2i − 16Ω2))⎛⎝ − (4Ω)/(ωi)sin(ωit) + sin(4Ωt)⎞⎠ + δi1cos(ωit)⎞⎠φi(x)
The final step is to combine the displacements from both forces to obtain the final solution:
(32)
∞⎲⎳i = 1⎡⎢⎣δi1cos(ωit) + (2F01(t)sin⎛⎝(iπ)/(4)⎞⎠)/(mℓω2i)[1 − cos(ωit)]⎤⎥⎦φi(x)
+ ∞⎲⎳i = odd⎛⎝(4F0)/(iπm(ω2i − 16Ω2))⎛⎝ − (4Ω)/(ωi)sin(ωit) + sin(4Ωt)⎞⎠ + δi1cos(ωit)⎞⎠φi(x)
where φi(x) = (iπx)/(ℓ) and ωi = (iπ)/(ℓ)√((T)/(m)).