Welcome to AE Resources
Forced Vibrating String: Example 2

2D) Replace and simplify for ν(x, t) for the distributed force

(29) ν(x, t) = i = oddξiφi
We have two cases, one for i = 1 and one for i ≠ 1
(30) ν(x, t) =  ( − 4Ω)/(ωi)(4F0)/(iπm(ω2i − 16Ω2))sin(ωit) + cos(ωit) + (4F0)/(iπm(ω2i − 16Ω2))sin(4Ωt) for i = 1 ( − 4Ω)/(ωi)(4F0)/(iπm(ω2i − 16Ω2))sin(ωit) + (4F0)/(iπm(ω2i − 16Ω2))sin(4Ωt) for i ≠ 1
Noticing that the cos(ωit) term is the only difference between the two, we can use the kronecker delta symbol to show this, and say
(31) ν(x, t) = i = odd(4F0)/(iπm(ω2i − 16Ω2)) − ()/(ωi)sin(ωit) + sin(4Ωt) + δi1cos(ωit)φi(x)
The final step is to combine the displacements from both forces to obtain the final solution:
(32) i = 1δi1cos(ωit) + (2F01(t)sin(iπ)/(4))/(mω2i)[1 − cos(ωit)]φi(x)  + i = odd(4F0)/(iπm(ω2i − 16Ω2)) − ()/(ωi)sin(ωit) + sin(4Ωt) + δi1cos(ωit)φi(x)
where φi(x) = (iπx)/() and ωi = (iπ)/()((T)/(m)).
← Previous Page
← Previous Page