![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
![]() |
||||||
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
|||||||
![]() |
![]() |
APPLICATIONS
The concepts of rigid body or particle dynamics are used in engineering when motion is involved. This can be motion of a fluid element, a controller such as a flap or landing gear mechanism, and trajectories of vehicles.
It is important that the principles of dynamics and moving frames are well understood by engineers. A major application of these principles can be found in aeroelasticity when sweeping a wing causes a frame transformation from the wing that is not swept.